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11.10 Tables of Transforms
Table I. Fourier Cosine Transforms

See (2) in Sec. 11.8.

1

2 (�(a) see App. A3.1.)

3

4

5

6
Re �
Real part

7

8

9

10 (See Sec. 6.3.)

11

12 (See Secs. 5.5, 6.3.)
B

2

p
 1

2a2 � w2
 (1 � u(w � a))J0(ax) (a � 0)

1

12p
 arctan 

2

w2

e�x sin x
x

B

p

2
 (1 � u(w � a))

sin ax
x (a � 0)

1

12a
 cos aw2

4a
�
p

4
bsin (ax2) (a � 0)

1

12a
 cos aw2

4a
�
p

4
bcos (ax2) (a � 0)

1

12p
c sin a(1 � w)

1 � w
�

sin a(1 � w)

1 � w
de cos x if 0 � x � a

0 otherwise

B

2

p
 n!

(a2 � w2)n�1 Re (a � iw)n�1xne�ax (a � 0)

1

12a
 e�w2>(4a)e�ax2

 (a � 0)

e�w2>2e�x2>2

B

2

p
 a a

a2 � w2be�ax (a � 0)

B

2

p
 
� (a)

wa  cos 
ap

2
xa�1 (0 � a � 1)

B

2
p

 sin aw
we1 if 0 � x � a

0 otherwise

f̂ c (w) �  fc ( f )f (x)
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Table II. Fourier Sine Transforms

See (5) in Sec. 11.8.

1

2

3

4 (�(a) see App. A3.1.)

5

6

7
Im �
Imaginary part

8

9

10

11 (See Sec. 6.3.)

12 12p 
sin aw

w  e�awarctan 
2a
x  (a � 0)

B

p

2
 u (w � a)

cos ax
x  (a � 0)

1

22p
c sin a(1 � w)

1 � w
�

sin a(1 � w)

1 � w
de sin x if 0 � x � a

   0 otherwise

w

(2a)3>2
 e�w2>4axe�ax2

 (a � 0)

we�w2>2xe�x2>2

B

2

p
 n!

(a2 � w2)n�1 Im (a � iw)n�1xne�ax (a � 0)

B

2
p

 arctan 
w
a

e�ax

x  (a � 0)

B

2

p
 a w

a2 � w2be�ax (a � 0)

B

2

p
 
� (a)

wa  sin 
ap

2
xa�1 (0 � a � 1)

21w1>x3>2

1>1w1>1x

B

2
p

 c 1 � cos aw
w de1 if 0 � x � a

0 otherwise

f̂ s (w) �  fs ( f )f (x)
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536 CHAP. 11 Fourier Analysis

Table III. Fourier Transforms

See (6) in Sec. 11.9.

1

2

3

4

5

6

7

8

9

10
B

p

2
 if ƒ w ƒ � a; 0 if ƒ w ƒ � a

sin ax
x  (a � 0)

1

12a
 e�w2>4ae�ax2

 (a � 0)

i

22p
 
eib(a�w) � eic(a�w)

a � w
e eiax if b � x � c

 0 otherwise

B

2
p

 
sin b(w � a)

w � ae eiax if �b � x � b

 0 otherwise

e(a�iw)c � e(a�iw)b

12p(a � iw)
e eax if b � x � c

 0 otherwise

1

12p(a � iw)
e e�ax if x � 0

  0       otherwise
 (a � 0)

�1 � 2eibw � e�2ibw

12pw2
μ

x if 0 � x � b

2x � b if b � x � 2b

0 otherwise

B

p

2
 
e�a ƒw ƒ

a

1

x2 � a2
 (a � 0)

e�ibw � e�icw

iw12p
e1 if b � x � c

0 otherwise

B

2
p

 sin bw
we1 if �b � x � b

0 otherwise

f̂ (w) �  f( f )f (x)
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Chapter 11 Review Questions and Problems 537

1. What is a Fourier series? A Fourier cosine series? A
half-range expansion? Answer from memory.

2. What are the Euler formulas? By what very important
idea did we obtain them?

3. How did we proceed from -periodic to general-
periodic functions?

4. Can a discontinuous function have a Fourier series? A
Taylor series? Why are such functions of interest to the
engineer?

5. What do you know about convergence of a Fourier
series? About the Gibbs phenomenon?

6. The output of an ODE can oscillate several times as
fast as the input. How come?

7. What is approximation by trigonometric polynomials?
What is the minimum square error?

8. What is a Fourier integral? A Fourier sine integral?
Give simple examples.

9. What is the Fourier transform? The discrete Fourier
transform?

10. What are Sturm–Liouville problems? By what idea are
they related to Fourier series?

11–20 FOURIER SERIES. In Probs. 11, 13, 16, 20 find
the Fourier series of as given over one period and
sketch and partial sums. In Probs. 12, 14, 15, 17–19
give answers, with reasons. Show your work detail.

11.

12. Why does the series in Prob. 11 have no cosine terms?

13.

14. What function does the series of the cosine terms in
Prob. 13 represent? The series of the sine terms?

15. What function do the series of the cosine terms and the
series of the sine terms in the Fourier series of

represent?

16. f (x) � ƒ x ƒ (�p � x � p)

ex (�5 � x � 5)

f (x) � e 0 if �1 � x � 0

x if 0 � x � 1

f (x) � e 0 if �2 � x � 0

2 if 0 � x � 2

f (x)
f (x)

2p

17. Find a Fourier series from which you can conclude that 
.

18. What function and series do you obtain in Prob. 16 by
(termwise) differentiation?

19. Find the half-range expansions of 

20.

21–22 GENERAL SOLUTION

Solve, , where is
-periodic and

21.

22.

23–25 MINIMUM SQUARE ERROR

23. Compute the minimum square error for 
and trigonometric polynomials of

degree .

24. How does the minimum square error change if you
multiply by a constant k?

25. Same task as in Prob. 23, for 
Why is now much smaller (by a

factor 100, approximately!)?

26–30 FOURIER INTEGRALS AND TRANSFORMS
Sketch the given function and represent it as indicated. If you
have a CAS, graph approximate curves obtained by replacing

with finite limits; also look for Gibbs phenomena.

26. and 0 otherwise; by the
Fourier sine transform

27. and 0 otherwise; by the Fourier
integral

28. and 0 otherwise; by the Fourier
transform

29. and 0 otherwise; by the Fourier
cosine transform

30. and 0 otherwise; by the Fourier
transform
f (x) � e�2x if x � 0

f (x) � x if 1 � x � a

f (x) � kx if a � x � b

f (x) � x if 0 � x � 1

f (x) � x � 1 if 0 � x � 1

�

E*(�p� x � p).
f (x) � ƒ x ƒ >p

f (x)

N � 1, Á , 5
(�p � x � p)

f (x) � x>p

r (t) � ƒ t ƒ  (�p � t � p)

r (t) � 3t 2 (�p � t � p)

2p
ƒv ƒ 	 0, 1, 2, Á , r (t)ys � v2y � r (t)

f (x) � 3x2 (�p � x � p)

(0 � x � 1).
f (x) � x

1 � 1/3 � 1/5 � 1/7 � � Á � p/4

C H A P T E R  1 1  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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538 CHAP. 11 Fourier Analysis

Fourier series concern periodic functions of period , that is, by
definition for all x and some fixed ; thus, 
for any integer n. These series are of the form

(1) (Sec. 11.2)

with coefficients, called the Fourier coefficients of , given by the Euler formulas
(Sec. 11.2)

(2)

,

where . For period we simply have (Sec. 11.1)

with the Fourier coefficients of (Sec. 11.1)

Fourier series are fundamental in connection with periodic phenomena, particularly
in models involving differential equations (Sec. 11.3, Chap, 12). If is even

or odd , they reduce to Fourier cosine or Fourier
sine series, respectively (Sec. 11.2). If is given for only, it has two
half-range expansions of period 2L, namely, a cosine and a sine series (Sec. 11.2).

The set of cosine and sine functions in (1) is called the trigonometric system.
Its most basic property is its orthogonality on an interval of length 2L; that is, for
all integers m and we have

,

and for all integers m and n,

This orthogonality was crucial in deriving the Euler formulas (2).

�
L

�L

cos 
mpx

L
 sin 

npx
L

 dx � 0.

�
L

�L

sin 
mpx

L
 sin 

npx
L

 dx � 0�
L

�L

cos 
mpx

L
 cos 

npx
L

 dx � 0

n 	 m

0 
 x 
 Lf (x)
[ f (�x) � �f (x)][ f (�x) � f (x)]

f (x)

a0 �
1

2p
 �
p

�p

f (x) dx, an �
1
p

 �
p

�p

f (x) cos nx dx, bn �
1
p

 �
p

�p

f (x) sin nx dx.

f (x)

f (x) � a0 � a
�

n�1

 (an cos nx � bn sin nx)(1*)

2pn � 1, 2, Á

bn �
1
L

 �
L

�L

f (x) sin 
npx

L
 dx

an �
1
L

 �
L

�L

f (x) cos 
npx

L
 dxa0 �

1
2L

 �
L

�L

f (x) dx

f (x)

f (x) � a0 � a
�

n�1

 aan cos 
np
L

 x � bn sin 
np
L

 xb

f (x � np) � f (x)p � 0f (x � p) � f (x)
p � 2Lf (x)

SUMMARY OF CHAPTER 1 1
Fourier Analysis. Partial Differential Equations (PDEs)
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Summary of Chapter 11 539

Partial sums of Fourier series minimize the square error (Sec. 11.4).
Replacing the trigonometric system in (1) by other orthogonal systems first leads

to Sturm–Liouville problems (Sec. 11.5), which are boundary value problems for
ODEs. These problems are eigenvalue problems and as such involve a parameter

that is often related to frequencies and energies. The solutions to Sturm–Liouville
problems are called eigenfunctions. Similar considerations lead to other orthogonal
series such as Fourier–Legendre series and Fourier–Bessel series classified as
generalized Fourier series (Sec. 11.6). 

Ideas and techniques of Fourier series extend to nonperiodic functions defined
on the entire real line; this leads to the Fourier integral

(3) (Sec. 11.7)

where

(4)

or, in complex form (Sec. 11.9),

(5)

where

(6)

Formula (6) transforms into its Fourier transform , and (5) is the inverse
transform.

Related to this are the Fourier cosine transform (Sec. 11.8)

(7)

and the Fourier sine transform (Sec. 11.8)

(8) .

The discrete Fourier transform (DFT) and a practical method of computing it,
called the fast Fourier transform (FFT), are discussed in Sec. 11.9.

f̂ s(w) �
B

2
p �

�

0

f (x) sin wx dx

f̂ c (w) �
B

2
p �

�

0

f (x) cos wx dx

f̂  (w)f (x)

f̂  (w) �
1

12p �
�

��

f (x)e�iwx dx.

(i � 1�1)f (x) �
1

12p �
�

��

f̂  (w)eiwx dw

A (w) �
1
p �

�

��

f (v) cos wv dv,  B (w) �
1
p �

�

��

f (v) sin wv dv

f (x) � �
�

0

[ A (w) cos wx � B (w) sin wx] dw

f (x)

l

c11-b.qxd  11/9/10  8:56 PM  Page 539


